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Executive Summary

Speededness refers to the extent to which time limits affect test takers' performance. Speededness has
traditionally been defined as the extent to which some test takers are unable to finish all the test items, and
it has been measured by the percentage of test takers who do not reach a certain number of items (e.g., all of
the items, or 75% of the items). With regard to the Law School Admission Test (LSAT), speededness is
currently measured by calculating the proportion of test takers who do not reach each item on the test.
These proportions typically increase slightly toward the end of the test, indicating that the LSAT is partially
speeded. The definition ignores the fact that random guessing is likely to occur as time expires, especially on
multiple-choice tests, such as the LSAT, that do not subtract points for wrong responses. In fact, coaching
schools, and often the test instructions, encourage test takers to rapidly fill in any remaining answers on the
answer sheet, rather than leave them blank. Therefore, our measure of speededness probably
underestimates the true amount of speededness on the test. The primary function of the LSAT is not to
measure rate of work (speed), thus speededness is considered an ancillary variable. To know how great an
effect this ancillary variable has on test scores, an accurate measure of speededness is needed.

Test takers are not likely to rapidly fill in any remaining answers on the answer sheet if they have enough
time to read and fully consider each item. Thus, the presence of "rapid-guessing behavior" indicates that the
test was speeded for the test taker. Traditional indices underestimate the extent of speeded behavior because
test takers who rapidly guess do not have "unreached" items. To accurately measure speededness, rapid
guesses must be reflected in the estimate.

If test takers had enough time, they would presumably engage in "solution behavior" on all items. In
solution behavior, test takers actively try to determine the correct answer (solution) to every item; they read
each item carefully and fully consider the answer. Response-times arising from solution behavior will likely
depend on item length, difficulty, and other characteristics, as well as person-specific variables.

In contrast, when engaging in rapid-guessing behavior, test takers may skim items briefly for key words, but
they do not completely read items. Consequently, item characteristics, such as difficulty, length, and content,
may have little effect on response-times arising from rapid-guessing behavior.

Clearly, rapid-guessing behavior and solution behavior will lead to different response-time distributions. In
the present study, a rigorous measure of speededness is developed by mathematically modeling item
response-time distributions from a computer-administered version of the Graduate Record Examinations
(GRE) General Test. The data analyzed are from the analytical measure of the GRE which is comprised of
two item types (logical reasoning and analytical reasoning). These two item types are very similar to two of
the item types (with the same name) on the current LSAT. Using standard model-fitting techniques, it was
determined that item response-time distributions on the first half of the test section could be described by a
single underlying distribution, whereas items on the last half of the test required two underlying
distributions. Additional evidence suggests that on the first half of the test section, the response-times were
the result of solution behavior, and on the last half of the test section the two underlying distributions were
the result of solution behavior and rapid-guessing behavior. The modeling techniques were successful in
detecting items containing rapid-guessing behavior and in estimating the proportion of responses that were
rapid guesses. Combining the proportion of rapid guesses on each item with the proportion of test takers
who did not reach each item provides a new, rigorous measure of speededness which can be used to better
understand what test scores mean.

The Law School Admission Council (LSAC) is currently researching the feasibility and advisability of
administering the LSAT on computer. If the LSAT is transferred to a computer-administered format, the
methodology developed in this paper will be useful for providing an accurate measure of speededness on
the LSAT.
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Abstract

Speededness refers to the extent to which time limits affect test takers' performance. With regard to the Law
School Admission Test (LSAT), speededness is currently measured by calculating the proportion of test
takers who do not reach each item on the test. These proportions typically increase slightly toward the end
of the test, indicating that the LSAT is partially speeded. Because the LSAT is number-right scored (i.e., no
points are subtracted for incorrect responses), test takers are encouraged to guess on items rather than leave
them blank. Therefore, this measure of speededness for the LSAT probably underestimates the true amount
of speededness on the test. A more accurate assessment of speededness should also reflect the tendency of
test takers to rapidly guess on items as time expires. This "rapid-guessing" component of speededness can
be estimated by modeling response-times with a two-state mixture model, as demonstrated with data from a
computer-administered reasoning test. The combined effect of unreached items and rapid guessing provides
a more complete measure of speededness than has previously been available.

Introduction

Testing theorists distinguish between tests that measure "power" and tests that measure "speed." Items in a
pure power test range in difficulty, and there is no time limit; the goal is to measure how accurately test
takers can answer the items. The Information subtest of the Wechsler Adult Intelligence Scale (WAIS), which
tests for general knowledge, is a good example of a pure power test. In contrast, items in a pure speed test
are very easy, and the time limit is strict; the goal is to measure how quickly test takers can respond. An
example of a speed test is the Digit Symbol subtest of the WAIS in which test takers match symbols to
numbers as quickly as possible (accuracy does count as well). Most aptitude and assessment tests are
designed essentially as power tests, but a speed component is introduced when these tests are administered
with a time limita practice often adopted for group administration. The Law School Admission Test
(LSAT) is such a test.

Speededness, or the extent to which a test is speeded, is of concern primarily because it can adversely affect
test characteristics (e.g., reliability; Gulliksen, 1950) and item parameters (Mollenkopf, 1950; Oshima, 1994;
Schnipke, 1996). On a more theoretical note, Gulliksen (1950) pointed out that the item indices of classical
test theory were developed for power tests and might not be appropriate if the speed component is too
large. Similarly, Hambleton and Swaminathan (1985) argued that unidimensional item response theory (IRT)
models implicitly assume that the test is unspeeded; speed and power components would require
separate dimensions.

The Law School Admission Council (LSAC) is currently researching the feasibility and advisability of
administering the LSAT on computer. One advantage of computerized tests is that response-times are
available operationally. The primary function of the LSAT is not to measure rate of work (speed), thus
speededness is considered an ancillary variable. To know how great an effect this ancillary variable has on
test scores, an accurate measure of speededness is needed. In this study, a rigorous measure of speededness
is developed using item response-time data from a computer-administered version of the Graduate Record
Examinations (GRE) General Test. The data analyzed are from the analytical measure of the GRE, which is
comprised of two item types (logical reasoning and analytical reasoning). These two item types are very
similar to two of the item types (with the same name) on the current LSAT. If the LSAT is transferred to a
computer-administered format, the methodology developed in this paper will be useful for providing
accurate measures of speededness.

The data for this project were provided to the first author by the Educational Testing Service (ETS) and the Graduate Record Examinations
(GRE) Board through the GRE Graduate Research Assistantship in Psychometrics Program. Support for the second author was provided
by a National Science Foundation predoctoral fellowship.



Measuring Speededness

Theorists have assumed that on a pure power test (one that is completely unspeeded), all test takers will
answer all test items. Consistent with this assumption, some researchers have classified a test as speeded if
some test takers did not reachl all items; this is a valid conclusion based on the logic of modus tollens.
Unfortunately, researchers have also classified tests as pure power as long as all test takers completed all
items; this is an example of Affirming the Consequent, a logical fallacy. It may be possible for test takers to be
adversely affected by the time limit but to still give a response to every item.

Other researchers switched from dichotomous decisions (power vs. speeded) to indices of speededness
that are based on the percentage of test takers who do not reach all items.2 This is the current measure of
speededness employed by LSAC with regard to the LSAT. These indices are plagued by a more complex
version of Affirming the Consequent. Namely, the indices are based on the assumption that the extent to which
test takers fail to complete all the items adequately represents the extent of speededness. Repercussions of
time pressure that do not result in unreached items will not be reflected in these indices.

In particular, this treatment of speededness ignores the fact that random guessing is likely to occur as time
expires, especially on multiple-choice tests, such as the LSAT, that do not penalize wrong responses. In fact,
coaching schools, and often the test instructions, encourage test takers to rapidly fill in remaining answers
on answer sheets rather than leave them blank. Test takers are not likely to engage in this behavior if they
have enough time to read and fully consider each item, so the presence of "rapid-guessing behavior"
indicates that the test was speeded for the test taker. Traditional indices underestimate the extent of
speeded behavior because test takers who rapidly guess do not have "unreached" items.

Yamamoto (1995) was also concerned with the guessing component of speededness. His primary goal
was to develop a method of estimating item parameters that eliminates the effects of random responding.
He assumed that test takers begin a test in what we will call "solution behavior." In solution behavior,
test takers actively try to determine the correct answer (solution) to every item. Yamamoto assumed that
test takers might switch to a random-responding strategy (what we call "rapid-guessing behavior") as time
elapses, and he identified such behavior by the lowered accuracy of the responses. The current work is similar
to Yamamoto's, but we focus on response times, rather than accuracy, to categorize test taker behavior.

Current Model

Like Yamamoto (1995), we assume that test takers choose to engage in either solution behavior or
rapid-guessing behavior. Further, we assume that test takers can switch strategies at any point and that
they do so in response to the time constraints on the test. When engaged in solution behavior, test takers
read each item carefully and fully consider their answers. Accuracy will then depend jointly on test taker
ability and item difficulty and other item characteristics. Consequently, response times arising from
solution behavior will likely depend on item length, difficulty, and other characteristics, as well as
person-specific variables.

In contrast, when test takers respond rapidly to items as time expires, their accuracy rates will be at or
near chance because they are not fully considering the items. In rapid-guessing behavior, test takers
may skim items briefly for key words, but they do not thoroughly read the items. Consequently, item
characteristics, such as difficulty, length, and content, may have little effect on response times arising
from rapid-guessing behavior.

1 Unreached items on a paper-and-pencil test are defined as unanswered items at the end of a timed test section. Unanswered items that
are followed by at least one answered item are defined as omitted items. Notice that on a computer-administered test, more precise defi-
nitions are possible. Omitted items are items that are presented to the test taker (i.e., appear on the screen) but are unanswered. Un-
reached items are items that were never presented to the test taker.

2There are other related indices, such as the percentage of test takers who do not reach 75% of the items and the percentage of items
that were not reached by 100% of the test takers (Swineford, 1956) and the ratio of the variance of unreached items to the total error vari-
ance (Gulliksen, 1950). For simplicity, indices such as these will not be discussed, but the same logic applies.
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The above processing assumptions lead to the following predictions: First, whereas the response-time
distributions for solution behavior may vary substantially across items, the response-time distributions
for rapid-guessing behavior will be similar across items. Second, the tendency of test takers to engage in
rapid-guessing behavior will increase as time expires. Third, accuracy rate as a function of response-time
will be monotonically increasing over the range of response-times common to both distributions. These
hypotheses will be elaborated on in a subsequent section.

Mathematical Development

Two-State Mixture Model

If each test taker is assumed to be engaged in either rapid-guessing or solution behavior on a given item,
and these two types of behavior are assumed to be associated with different response-time distributions,
then the observed response-time distribution can be described as a mixture of rapid-guessing and
solution-behavior response-time distributions. This is a two-state mixture model (e.g., Luce, 1986;
Townsend & Ashby, 1983) which can be expressed mathematically as

Foi = pi FGi +( 1-- pi) Fsi

where

Foi is the observed response-time distribution for item i,

pi is the proportion of rapid guesses on item i,

FGi is the rapid-guessing response-time distribution for item i, and

F's; is the solution-behavior response-time distribution for item i.

Parameters of the model can be estimated from data as long as the shapes of the underlying distributions
can be specified reasonably and p, is not too close to 0 or 1. As p, approaches 0, the parameters of the
rapid-guessing distribution cannot be estimated because there are too few rapid-guessing observations.
Similarly, as pi approaches 1, the parameters of the solution-behavior distribution cannot be estimated.

Single-State Model

When p, = 0 , the standard mixture model simplifies to

Foi = Fsi

(1)

(2)

because all test takers are engaged in solution behavior. This would be expected for items presented at the
beginning of a speeded test and all items on an unspeeded (power) test. When pi =1 , all test takers are
engaged in rapid-guessing behavior (an unlikely finding). More generally, pi can be used as an index of the
extent of rapid-guessing behavior (i.e., one component of an item-level index of speededness).

On an unspeeded test, the single-state model given in Equation 2 should account for the full distribution of
response times. If some test takers are engaging in rapid-guessing behavior, this model will be unable to
account for the number of fast responses (i.e., the rapid guesses). The two-state standard mixture model,
given in Equation 1, will be needed to account for the response-time distribution on items with rapid
guessing behavior.

0



Hypotheses

Common-Guessing Distribution

As noted above, item characteristics should not affect response times in the rapid-guessing distribution.
Therefore, the rapid-guessing distribution should be the same for all items that have rapid-guessing
behavior. To test this hypothesis, a "common-guessing mixture" model was constructed by constraining the
parameters of the rapid-guessing distribution in the standard mixture model to be constant across items.
The proportion of rapid guesses ( pi ) and the solution-behavior parameters were allowed to vary across
items. The mathematical form of the common-guessing mixture model is given by

Foi = pi FCG + (1- pi ) Fsi (3)

where FcG is the common-guessing mixture distribution and is the same for all items.

The only difference between the common-guessing mixture model and the standard mixture model
(Equation 1) is that FCG does not vary across items, whereas Fri does vary across items. Thus, the
common-guessing mixture model is a special case of the standard mixture model. (Note that the single-state
model in Equation 2 is also a special case of the standard mixture model where pi = 0 for all items.) If the
common-guessing mixture model fits the data as well as the standard mixture model, the hypothesis that
rapid-guessing behavior is the same across items is supported.

Increasing pi by Position Function

Because rapid-guessing behavior is a consequence of time constraints, the proportion of test takers
engaging in rapid-guessing behavior should increase as time expires. This assumption, and the assumption
that test takers answer items in order, lead to the prediction that pi will an increasing function of item
position. Examination of the best-fitting parameter estimates (i.e., the pi 's) should provide evidence
bearing on this hypothesis.

Increasing Accuracy by Response-Time Function

Rapid-guessing behavior should result in lower accuracy and faster response times than does solution
behavior. The response-time distributions associated with rapid-guessing and solution behavior are
assumed to be typical response-time distributions; that is, unimodal distributions with central mass and
decreasing tails (Luce, 1986). If these distributions overlap, accuracy should be a monotonically increasing
function of response time across the range of overlap because the proportion of responses arising from
solution behavior is also an increasing function of response time. (If we were willing to assume that
accuracy and response time are independent when conditioned on behavior, or if we could specify the
nature of the relationship, we could offer a more specific prediction, but such theorizing is probably
premature.) Examination of the accuracy by response-time functions will provide data for the present
hypothesis as well as future theoretical work.

To determine whether the mixture-model approach is a reasonable way to model speededness and to test
the three hypotheses about rapid-guessing behavior, the single-state, standard mixture, and
common-guessing mixture models were fit to the response-time distribution for each item on a
computer-administered version of the Graduate Record Examinations (GRE) General Test. The single-state
model should fit the response times for an item if there is no rapid-guessing behavior, and it should
underpredict the number of fast responses if there is rapid-guessing behavior. On such items, the standard
mixture model or the common-guessing mixture model will be required to describe the entire distribution of
response times accurately.

9
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Method

The computer-administered, nonadaptive GRE General Test analyzed in the present study was administered to
7,218 test takers in the 1992-1993 academic year. The test takers chose to take the computerized version rather
than the paper-and-pencil version of the test. Because scores were used operationally (i.e., scores were reported
to graduate schools for use in admission decisions), test takers were highly motivated to do well. Because no
points were subtracted for incorrect answers, it was in the test takers best interest to guess at answers rather than
leave them blank. Test takers were aware that no penalties for incorrect responses would be applied.

The analytical section of the GRE that was analyzed in the present study consisted of 25 items and was
administered with a 32-minute time limit. All test takers received the same 25 items. The analytical section
contained two item types: logical reasoning items, which measure the ability to understand, analyze, and
evaluate arguments (items 7, 8, 9, 23, 24, and 25), and analytical reasoning items, which occur in sets and
measure the ability to understand a given structure of arbitrary relationships and to deduce new
information from the relationships given (set 1, items 1-6; set 2, items 10-14; set 3, items 15-18; and set 4,
items 19-22). Items were presented one at a time on the computer screen. For the analytical reasoning items,
the common stimulus (which contained the structure of the arbitrary relationships) was displayed on half
the screen, and the items that referred to it were displayed one at a time on the other half of the screen.

Although, by default, the items were presented in numerical order, test takers could answer the items in any
order by using "navigation tools." They could omit items (i.e., see an item but not answer it and proceed to
another item), and they could go back to previously viewed items and change their answers. The test was
administered in this way so that it would be as similar as possible to the paper-and-pencil version.

Response-Time Collection

Because test takers could "navigate" through the test in any order, they could attempt an item more than
once. The recorded response time for an item was the total time spent on the item during all attempts to that
item. The recorded response was the answer provided on the final attempt on the item. (Multiple attempts
were uncommon; the mean number of attempts on each item ranged from 1.12 attempts on item 1, to 1.54
attempts on item 25, excluding those test takers who never saw/attempted3 the item.) Response times were
collected to one-second precision.

Results

Probability density functions (PDFs) for the response times to several representative items4 are shown in
Figure 1. Response time is plotted on the abscissa, and the proportion of test takers who responded at each
level of response time is plotted on the ordinate. The graphs are stacked area charts (at each response-time
level, correct responses are stacked on top of incorrect responses, not behind them).

All the response-time distributions are positively skewed, and many are unimodal (items on the first
half of the tests tended to be unimodal; see item 4 in Figure 1 for an example). Positive skewness and
unimodality are characteristic of response-time distributions in general, but some of the distributions are
uncharacteristically bimodal due to an unusually large number of fast response-times. This is true of all
items on the last half of the test (items 13-25; see Figure 1 for examples). Bimodality is characteristic of some
mixture distributions (but see Townsend & Ashby, 1983, for exceptions). The fast responses also tend to be
incorrect, consistent with the claim that they arise from rapid-guessing behavior.

3
itemtem never appeared on the screen in this case.

4
Although only a limited number of items can be shown in the figures, all of the items are described in general terms.

5
For convenience, we refer to the analytical section from the GRE as "the test," although it was one of seven components, or sections,

of the entire GRE.
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FIGURE 1. Probability density functions of response times for several representative items. The scales
are not the same across items.

Modeling Response Times

Three models were fit to the observed cumulative distribution function (CDF)6 for each item: (1) a
single-state model (Equation 2), which would be expected to fit typical response-time data; (2) a two-state
standard mixture model (Equation 1), which will fit much better than the single-state model if there are two
underlying distributions (e.g., a solution-behavior distribution and a rapid-guessing distribution); and (3) a
two-state standard mixture model that is constrained to have a common rapid-guessing distribution for all
items (Equation 3). The models were fit to the observed CDF for each item using nonlinear regression. The
Levenberg-Marquardt algorithm is used by SPSS for unconstrained models (NoruAis, 1994) and was used for
the single-state and standard mixture models. The sequential quadratic programming algorithm is used by
SPSS when constraints are placed on the model; it was used for the common-guessing mixture model where
the R's were constrained to be non-negative.

Choosing the Shapes of the Underlying Distributions

In order to fit the models to data, the shapes of the solution and rapid-guessing response-time distributions
must be specified. We assumed that both distributions would include the unimodality and positive skewness
typical of response-time distributions in general (Luce, 1986). In the absence of theoretical predictions, we
assumed that the distributions would be approximated well by lognormal distributions. This distribution
was selected because the parameters are fairly intuitive, and thus easier to interpret than parameters of
some other distributions (e.g., the Ex-Gaussian). The lognormal probability density function is given by

1 [1 n (Wm)] 2f( t ) x exp
to (2 it) 2.a2

(4)

6The cumulative distribution function (CDF) was used because it tends to be a more stable estimator than the probability density func-
tion (PDF). Equations 1, 2, and 3 hold for both the CDF and the PDF.
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where

is the response time (RT),
m is the scale parameter, the median of the RTs, and
a is the shape parameter, the standard deviation of the In(RTs) (Evans, Hastings, & Peacock, 1993).

The median, m, is expressed in seconds, and a is expressed in ln(sec).

By fitting F GI, F si, and Fcc (from Equations 1, 2, and 3) as lognormal distributions, each underlying
distribution could be specified with only two parameters. This results in two parameters per item for the
single-state model (m and sa) for a total of 50 parameters (2 parameters x 25 items). There were five
parameters per item for the standard mixture model (two m's, two crs, and p) for a total of 125 parameters (5
parameters x 25 items). Finally, there were three parameters per item for the common-guessing mixture
model (ms, as, and p, where the S subscripts refer to the solution-behavior distribution), in addition to mG
and saG (where the G subscripts refer to the rapid-guessing distribution) from the common-guessing mixture
distribution, for a total of 77 parameters (3 parameters x 25 items, plus 2 common-guessing parameters).
Parameter estimates for all 3 models are shown in Table 1. (Parameter estimates for the standard mixture
model could not be obtained for some items, as discussed below, and these cells in Table 1 are empty.)

TABLE 1

Parameter estimates of the single-state, mixture, and common-guessing models

Item

Single-State Mixture Common-Guessing

A A
CT

A

Ms
A
as

p

A
MG

A

aG
A
ms

A

1 82.77 0.43 82.77 0.43 0.00
2 79.27 0.51 79.27 0.51 0.00
3 48.32 0.68 54.13 0.60 0.12
4 32.27 0.67 32.44 0.66 0.01
5 86.72 0.53 89.53 0.50 0.04
6 42.54 0.55 44.41 0.52 0.08 18.77 0.88 43.68 0.53 0.04
7 72.69 0.40 72.69 0.40 0.00
8 61.35 0.39 61.37 0.39 0.00
9 83.80 0.37 84.25 0.36 0.01 4.74 0.52 84.32 0.36 0.01
10 155.26 0.34 157.54 0.32 0.03
11 48.32 0.65 48.74 0.65 0.01
12 81.77 0.54 87.19 0.48 0.08
13 65.74 0.50 69.90 0.44 0.10 13.84 1.52 69.95 0.45 0.08
14 93.63 0.55 105.65 0.45 0.15 19.61 1.06 103.55 0.47 0.11
15 130.71 0.38 139.74 0.32 0.12 36.17 0.91 137.25 0.34 0.07
16 36.44 0.66 41.83 0.57 0.15 9.06 0.97 41.30 0.57 0.16
17 51.75 0.60 59.08 0.49 0.13 5.32 0.81 60.32 0.48 0.18
18 32.81 0.67 39.36 0.53 0.16 5.25 0.71 40.36 0.50 0.26
19 93.22 0.45 106.34 0.31 0.22 24.72 1.20 104.53 0.34 0.15
20 55.03 0.83 79.63 0.55 0.28 7.25 1.14 81.42 0.53 0.32
21 42.02 0.84 64.46 0.50 0.31 5.85 0.98 67.38 0.46 0.39
22 33.71 0.99 65.66 0.47 0.43 6.93 1.11 68.16 0.43 0.50
23 63.36 0.53 71.37 0.43 0.14 8.44 0.91 71.57 0.42 0.15
24 43.61 0.59 53.60 0.40 0.25 8.70 1.35 53.96 0.40 0.26
25 46.63 0.60 58.20 0.38 0.28 10.51 1.41 58.47 0.39 0.27

Note. The parameterization shown is the estimated median in seconds and the estimated standard deviation
in ln(sec). For the mixture and common-guessing parameters, the subscripts S and GA-efer to the solution and
guessing distributions, respectively. For the common-guessing model, mG = 9.73 and szYG = 1.26 for all items.
Lines separate item sets (items 7, 8, 9, 23, 24, and 25 are not in a set).
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9

Examining the Fit of the Models

To evaluate the fit of the models, the root mean squared error (RMSE), was calcuated for each model.
Additionally, the observed and predicted CDFs were plotted for each item and were inspected visually.
Several representative items will be shown.

Root Mean Squared Error

RMSE is the standardized difference between the observed and predicted function and can be thought of as
a measure of dispersion centered on the predicted function. Larger values of RMSE indicate worse fits.
RMSE is given by

where

T

nor
For

T
1

RMSE 7, L ( For Pot )2

t = 1

is the index of response times (RTs),
is the number of observed response times,
is the observed value of the CDF for the till response time, and
is the predicted value of the CDF for the t" response time.

(5)

Figure 2 shows the RMSE for the single-state, standard mixture, and common-guessing mixture models for
each item. The single-state model (Equation 2) fit the response-time distributions for most of the items on
the first half of the test very well; on these items RMSE for the single-state model was small. On the last half
of the test (beginning with item 12), the single-state model did not fit nearly as well; RMSE is markedly
larger on these items. The standard mixture and common-guessing mixture models fit the response-time
distributions for all items very well (when final estimates were available).? On the first 11 items, the
single-state model performs as well or nearly as well as the standard mixture and common-guessing
mixture models, but on the rest of the items, the difference in performance is much larger.

7The mixture model does not have final parameter estimates for some items early in the test because there were not enough rapid
guesses for parameter estimates of the guessing distribution to stabilize on final values. For these items, Table 1 contains empty cells for
the mixture model, and Figure 2 has no value of RMSE. (The guessing-distribution parameters of the

p
model are esti-

mated from only those items that are not adequately described by the single-state model; as long as # 0 for at least one item, the pa-
rameter estimates for the common-guessing model will stabilize on final values. Thus there are no empty cells in Table 1 for the
common-guessing model, and there are RMSE values for the common-guessing model for all items.)
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FIGURE 2. Root mean squared error for the single-state, mixture, and common-
guessing models.

Visual Inspection of the Cumulative Distribution Functions (CDFs)

For a more detailed look at how the various models fit the data, the CDFs for several representative items
are shown in Figures 3-6. Item 4, shown in Figure 3, is typical of items on the first half of the test. On this
item, the observed CDF is barely distinguishable from the CDFs predicted from the single-state and
common-guessing mixture models. The common-guessing mixture model makes predictions that are
virtually identical to those of the single-state model for item 4 because p is so small. Parsimony dictates
using the single-state model on these items; guessing is not a factor for early items.

Item 4
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FIGURE 3. Cumulative distribution function of observed response times for item 4
and predicted values of the single-state and common-guessing models.
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Items on the last half of the test were not fit as well by the single-state model, as indicated by the RMSE
values in Figure 2. The response-time distributions for items on the last half of the test were weakly
bimodal. The second mode was formed by an unusual number of fast responses. On all of these items, the
single-state model underpredicted the number of fast responses, as shown for item 17 in Figure 4. As the
proportion of rapid guesses increased (according to the standard mixture model), the fit of the single-state
model became worse (as in Figure 5, item 22). On these two items, as well as all other items on the last half
of the test, the standard mixture model fit the entire response-time distribution very well (also indicated by
the RMSE values).

1.0

0_ .

0
0

.6
>
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E .4

Item 17
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Common
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180 240

FIGURE 4. Cumulative distribution function of observed response times for item 17
and predicted values of the single-state, mixture, and common-guessing models.
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FIGURE 5. Cumulative distribution function of observed response times for item 22
and predicted values of the single-state, mixture, and common-guessing models.
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Addressing the Hypotheses

Is Rapid-Guessing Behavior the Same Across Items?

Both the standard mixture model and the common-guessing mixture model fit very well for most of the
items on which the single-state model failed (as in Figures 4 and 5). The common-guessing mixture model
fit items that were the first in a set (items 10, 15, and 19)8 slightly less well than other items. As shown in
Figure 2, the RMSE for the common-guessing mixture model on items 15 and 19 are slightly larger than
that of the standard mixture model (although still quite small). On these items, the common-guessing
mixture model slightly overpredicted the number of fast responses (see, for example, item 19 in Figure 6;
the difference was just large enough for the lines in the graph to be distinguishable), but the fit was
still quite good. Thus it appears that the rapid-guessing response-time distribution is essentially the
same across items.

1.0

.8

.6

.4

.2

Item 19

0 60

Observed

Single-State

Mixture

Common

120 180 240 300

Response Time (seconds)

FIGURE 6. Cumulative distribution funtion of observed response items for item 19 and
predicted values of the single-state, mixture, and common-guessing models.

Does Rapid-Guessing Behavior Increase Toward the End of the Test?

To address whether rapid-guessing behavior increases during the test, the patterns of p's, from the standard
mixture and common-guessing mixture models (shown in Table 1) were inspected. The p's obtained from
the fits of the standard mixture and common-guessing mixture models tend to increase across item position.
However, there is also some evidence that item set influences the trend: p for the first item of a set tends to
be somewhat lower than the p for the previotAs item, and the p's increase within the set. This trend is also
evident in the RMSE results in Figure 2. (The p for item 3 from the common-guessing mixture model is
uncharacteristically high for that early in the test. Notice also that the RMSE values for both the single-state
and common-guessing mixture models on item 3 are larger than the values for nearby item. There was
clearly something peculiar about the response times on this item, and this was reflected in p.)

8
Item 1 was also the first of a set, but there was no rapid-guessing behavior on this item, as shown in Table 1.
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Is Accuracy an Increasing Function of Response Time?

As shown in Figure 7, accuracy starts near chance9 for fast response times, then increases as more time is
spent processing an item, up to a plateau that varies by item. (The upper tails in Figure 7 have been
truncated for each item because there are too few test takers to obtain stable estimates; between 2% and
6.25% of the test takers were trimmed from each item.)

To relate the accuracy function to the underlying distributions specified by the two-state model, the point
at which the hypothesized underlying rapid-guessing and solution distributions intersect was calculated
numerically for both the standard mixture and common-guessing mixture models. These points are
represented as vertical lines in Figure 7. The lines intersect the increasing portion of the accuracy functions,
as would be predicted by a two-state mixture model because the accuracy at these points should be an
even mixture of the accuracy rate obtained by rapid-guessing behavior and the accuracy rate obtained
through solution behavior. Notice that the intersecting lines for the two forms of the model (standard and
common-guessing) are similar, as would be expected because the parameters of the models are similar
(e.g., see Table 1).
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FIGURE 7. Accuracy as a function of response time for the representative items. The upper tail for
each item is truncated (2% to 6.25% of the responses were trimmed). Vertical lines show where the
hypothetical underlying guessing and solution distributions cross for the mixture model (dotted line)
and the common-guessing model (solid line).
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9
Actually, accuracy is often below chance for rapid guesses. More will be said about this finding in the Discussion.
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The Amount of Speededness on the Test

To determine the amount of speededness on the test, the proportion of rapid-guessing behavior (rii,) was
combined with the proportion of test takers who did not reach each item. To do this, p, (from the common-
guessing mixture model) was adjusted so that it is the proportion of rapid-guessing behavior in the entire
test taker population, rather than the proportion of rapid-guessing behavior among those who reached the
item. These adjusted values, along with the proportion of test takers who did not reach the item, are shown
in Figure 8 as a stacked bar chart. As shown, about 15% of the test takers did not reach the last item. In the
past, this number may have been used to describe the amount of speededness on the test. When rapid-
guessing behavior is also considered, a much higher proportion of test takers affected by speededness is
revealed. It is clear from Figure 8 that speededness affects all items on the last half of the test, and the
proportion of test takers who are affected is quite substantial (up to .53). The relationship between
rapid-guessing behavior and item sets that was revealed in Table 1 is also evident in Figure 8; rapid-guessing
behavior (and hence speededness) increases within a set, then decreases when a new set (or a nonset) starts.
The item most affected by speededness was item 22 which was the last item of the last set, not item 25 which
was the last item on the test.

Test-level indices of speededness could also be derived. For example, one could calculate the percentage
of items on which more than 10% (or some other percentage) of the test takers were speeded (engaged
in rapid-guessing behavior or did not reach the item). Alternately, the maximum percentage of speeded
behavior on any one item could be calculated. Additionally, the mean percentage of speeded behavior across
items could be calculated to provide an indication of test-level speededness.

0.60

0.50

Engaged in rapid-guessing behavior

Did not reach item
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FIGURE 8. Proportion of examinees who were affected by speededness on each item,
separated by those who did not reach the item and those who engaged in rapid-guessing
behavior. (The proportion of examinees engaging in rapid-guessing behavior was adjusted
to represent the proportion in the total examinee population, rather than the proportion of
those who reached the item.)



Discussion

Strict time limits may cause some test takers to rapidly answer items without fully considering the items,
especially if no points are subtracted from the test score for wrong responses, as on the LSAT. This is a wise
strategy for test takers to use, but it causes difficulties when speededness is being measured to determine
if speed was having too large an influence on test taker performance. Traditional speededness indices
depend on "unreached" items, but when test takers engage in rapid-guessing behavior, the items are not
unreached. More recent approaches to speededness depend on the drop in accuracy at the end of the test
(e.g., Yamamoto, 1995). The latter approach is better because it incorporates guessing, but a more direct
investigation of speededness would focus on the amount of time spent on each item.

Response times for individual items are not available on large-scale operational paper-and-pencil tests, but
for computer-administered tests, response times can be collected easily and unobtrusively. The present
study used response-time data from a computer-administered version of the GRE to develop a way to detect
rapid-guessing behavior (and hence speededness) on an operational, high-stakes examination.

It was clear from inspecting the observed probability density functions that items on the last half of the test
had more fast responses than would be expected if time had not been a factor. Many test takers were
responding in less than 10 seconds on these items, whereas the median response time was a minute or more.
Test takers who responded within several seconds clearly did not fully consider the item. At most, they may
have scanned the item and answer choices for key words.

In a more formal, model-based fit of response times, a single-state model was unable to account for the
number of fast response times on items on the last half of the test, although it generally fit well for items on
the first half of the test. Consistent with this finding, parameter estimates for a two-state standard mixture
model were not obtained for most items on the first half of the test because p, the proportion of responses in
the rapid-guessing distribution, was too small. Parameter estimates for the standard mixture model were
obtained for all items on the last half of the test where rapid guesses were more common.

Results suggest that rapid-guessing behavior is independent of item content and is a function of item
position. The underlying rapid-guessing distribution appears to be the same for all items, regardless of item
content, difficulty, length, or other item characteristics, and the pattern of p's suggests that rapid-guessing
behavior increases during the test, although set membership alters the pattern. Rapid-guessing behavior
appears to increase within a set (this is most noticeable when looking at the p's from the common-guessing
mixture model). When a new set (or a nonset) starts, rapid-guessing behavior drops. This suggests that test
takers may "give up" during a set butAtry again when a new set (or a nonset) starts. A test with no set-bound
items should have strictly increasing p's.

Finally, accuracy as a function of response time provides additional support for a two-state mixture model.
These functions show low accuracy levels for fast response times, rise to higher levels of accuracy for slower
response times, and reach a plateau for which increasing time does not increase accuracy; the location of the
increasing portion of the function corresponds to the rapid-guessing and solution distributions predicted
from the model.

The accuracy functions provided some unexpected information as wellaccuracy for the "fast" distribution
was not at chance (0.2), as would be expected if test takers were simply guessing randomly. On most items,
accuracy for fast response times is below chance. On a few items (10 and 15both the first of a set), accuracy
for the fast (rapid-guessing) distribution is actually above what would be expected by chance, but below the
accuracy associated with the "slow" (solution-behavior) distribution. Taken together with the response-time
results, these accuracy functions suggest that test takers are engaging in two types of behavior, but the
behavior associated with the "fast" distribution is not necessarily random guessing. Test takers, as a group,
may be engaging in a form of systematic guessing (e.g., "always respond A" or "pick the longest response
option") or may quickly seek key words (that often lead to distractors) without carefully analyzing the item
and answer options. Such a strategy would result in below-chance performance on most items and
above-chance on a selected few. These possibilities could be tested by examining the distribution of

19



responses (A, B, C, D, or E) as a function of response time, but we do not currently have access to the
response-selection data for the current test, so these possibilities could not be explored in the present study.
In any case, these findings provide an important direction for future research.

The point of modeling response times with a two-state mixture model (and verifying that the second
underlying distribution was consistent with what we expect rapid-guessing behavior to be) was to detect an
additional type of speeded behavior (i.e., rapid-guessing behavior) which could then be combined with the
traditional indication of speededness (i.e., not reaching the item) to provide a more accurate measure of the
total amount of speededness in the test. The proportion of test takers who did not reach each item
monotonically increased up to about .15 by the last item, so even by traditional standards this test seems
somewhat speeded. Using the mixture-model approach, we found even stronger evidence of speededness.
Fully half of the items showed evidence that test takers switched from a solution-based strategy to a
rapid-guessing strategy, and the percentage of test takers who switched to a rapid-guessing strategy
(indicating speededness) ranged up to 50%.

Displaying speededness item-by-item allows a more in-depth investigation of the phenomenon than a
summary statistic would allow. The item-level approach was able to show that speededness increased
within a set. In related work, Schnipke (1995) found that speededness may affect particular item types more
than others. She found that only reading comprehension items on the verbal section of the GRE showed
evidence of rapid-guessing behavior, and these items were located in the middle of the section. Inspecting
all items for evidence of speededness provides information that would be lost to summary statistics.

Implications

Time limits are useful for administrative reasons and scheduling purposes, and if the time limits are liberal
enough, there may be few negative consequences. Determining if the time limit is adequate is crucial. If
nearly all test takers are able to consider fully most of the items (i.e., engage in solution behavior), the time
limit has little effect on test scores, in which case the degree of speededness is very small and can be ignored.
This was not the case on the test analyzed in the present study; it was largely affected by the time limits.10

As LSAC considers computerizing the LSAT, the benefits of obtaining item response times should be
considered. With response times available, methodology such as that developed in the present studycan be
used to detect rapid-guessing behavior. This is not possible on paper-and-pencil administered tests. How
large an effect time limits have on the LSAT is not currently known because we cannot identify
rapid-guessing behavior.

If a time limit is used on an LSAT computerized test, it is possible to determine if the time limit has
detrimental effects on test taker behavior. Both the number of test takers who do not finish the test and
the response-time distributions should be considered. If most test takers reach all items and thereare no
unusually large groups of fast responses in the probability density functions, and if the single-state model
fits the distribution function for all items (including any fast response times), then it would seem to be the
case that the time limit was not having a detrimental effect on test taker behavior.

The proportion of test takers who engaged in rapid-guessing behavior on each item, r3, could be used as an
item-level index of rapid-guessing behavior (one kind of speededness) and should be added to the
proportion of test takers who did not reach the item for a complete item-level measure of speededness. This
would be a more appropriate approach to measuring the speed component in speeded tests than techniques
currently in use.

10
The version of the GRE used in the present study was not typical of other administrations because the computerized version of the

GRE is now administered adaptively and with a different time limit. Thus our conclusions about the amount of speededness in the GRE
section analyzed in the present study should not be generalized to other administrations of the GRE. Our goal is not to show how
speeded the GRE is, but rather it is to develop a new method for detecting rapid-guessing behavior in general.
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The present methodology could be used in its current form on nonadaptive computer-administered tests
(such as the test used in the present study) and possibly on tests which are composed of sequentially-
administered testlets (e.g., Lewis & Sheehan, 1990; Luecht, Nungester, & Hadadi, 1996; Reese & Schnipke, 1996;
Sheehan & Lewis, 1992). (In the sequentially-administered testlet design, the technique could be applied most
directly if the testlets were separately timed; each testlet could be analyzed separately).

The methodology cannot be directly applied to computerized adaptive testing (CAT) data, however. In CAT,
items appear in different locations in the test, absolute time limits do not necessarily apply, and test taker
ability is generally more homogeneous for a given item (especially items at extreme difficulty levels). These
factors add a level of complication that the current methodology does not cover. (Homogeneity of test taker
ability is a factor if response times are related to test taker ability.) Additional research is needed to adapt the
methodology to CAT data and also to predict speededness on CATs.

Conclusions

Response times have only recently become available in operational tests, and the current work is a first step
toward understanding an important aspect of response-time data. The current work also demonstrates the
importance of exploring the shapes of response-time distributions instead of focusing on summary statistics.
There is a great deal of response-time research that follows the current work. For instance, test takers would
presumably be less likely to rapidly guess on items if there was a penalty for incorrect responses, and future
research could investigate this topic. Future research could also investigate the possibility of rescoring tests
after removing rapid guesses (see Potenza & Stocking, 1994, for similar work on rescoring tests with
"flawed" items).
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